

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM03

(9665/FM03) Unit FP2 Pure Mathematics

Mark scheme

January 2020

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

 $\sqrt{\text{or ft}}$ Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)	Rotation about y -axis through 90°	M1 A1	Rotation identified y-axis and 90° oe
1(b)	$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	B1	(More than one transformation scores 0 marks) $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} $ seen or used for B or B ⁻¹
	$\mathbf{A} + \mathbf{B} + \mathbf{B}^{-1} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & 2 & 0 \end{bmatrix}$	B1ft	If not correct, ft on A +2×c's B
	Total	4	

Q	Answer	Marks	Comments
2	$\int \left(\frac{2x}{x^2+9} - \frac{6}{3x+2}\right) dx$ = $\ln(x^2+9) - 2\ln(3x+2)$	B1	Correct integration of $\frac{2x}{x^2 + 9}$ Correct integration of $\frac{6}{3x + 2}$
	(I=) $\lim_{a \to \infty} \int_0^a \left(\frac{2x}{x^2 + 9} - \frac{6}{3x + 2} \right) dx$	В1 М1	$3x + 2$ ∞ replaced by a (oe) and $\lim_{a \to \infty}$ seen or taken at any stage with no remaining lim relating to 0
	$= \lim_{a \to \infty} \left\{ \ln(a^2 + 9) - 2\ln(3a + 2) \right\}$ $-(\ln 9 - 2\ln 2)$ $= \lim_{a \to \infty} \left[\ln\left(\frac{a^2 + 9}{(3a + 2)^2}\right) \right] - \ln\left(\frac{9}{4}\right)$	M 1	[Remaining marks are dep on getting only In terms after integration] Dealing with the 0 limit correctly and using $\ln P - \ln Q = \ln \left(\frac{P}{Q}\right)$ at least
	$= \lim_{a \to \infty} \left[\ln \left(\frac{1 + \frac{9}{a^2}}{9 + \frac{12}{a} + \frac{4}{a^2}} \right) \right] - \ln \left(\frac{9}{4} \right)$	M 1	once <u>at any stage</u> Writing $F(a)$ oe in a suitable form when considering $a \to \infty$
	$\int_0^\infty \left(\frac{2x}{x^2 + 9} - \frac{6}{3x + 2} \right) dx$ $= \ln \frac{1}{9} - \ln \frac{9}{4} = \ln \frac{4}{81}$	A 1	CSO
	Total	6	

Q	Answer	Marks	Comments
3(a)	$(\mathbf{a} \times \mathbf{b}) = (-5\mathbf{i} - 8\mathbf{j} + \mathbf{k})$ (Area of triangle=)	B1	Correct $\mathbf{a} \times \mathbf{b}$ or correct $\mathbf{b} \times \mathbf{a}$
	$=\frac{1}{2} \mathbf{a}\times\mathbf{b} =\frac{1}{2}\sqrt{25+64+1}$	M1	Valid method to evaluate $\frac{1}{2} \mathbf{a} \times \mathbf{b} $ oe
	$(=\frac{1}{2}\sqrt{90}) = \frac{3}{2}\sqrt{10}$	A 1	A.G. CSO
3(b)	$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 3(-5) - 1(-8) + 7(1)$ = 0	M1	Correct method to evaluate a relevant s.t.p.; ft earlier errors
	(a × b) ⋅ c = 0 so vectors are coplanar	A1ft	Only ft on wrong sign(s) in c's $\mathbf{a} \times \mathbf{b}$ oe from part (a)
	Total	5	

Q	Answer	Marks	Comments
4	When $n = 1$, LHS=1, RHS=1 (so formula is true for $n = 1$)	B1	Correct values
	Assume formula true for $n = k$ (*) integer k , $k \ge 1$ so $\sum_{r=1}^{k+1} r \times 4^{r-1}$ $= \frac{1}{9} + \frac{4^k}{9} (3k-1) + (k+1) \times 4^k$	M1	Assumes the result true for $n=k$ and considers $\sum_{r=1}^{k+1} r \times 4^{r-1}$ oe
	$= \frac{1}{9} + \frac{4^{k}}{9} [3k - 1 + 9(k+1)]$	M1	Grouping the 4 ^k terms
	$= \frac{1}{9} + \frac{4^k}{9} [12k + 8]$	A 1	PI by next line
	$= \frac{1}{9} + \frac{4^{k+1}}{9} [3k+2]$ $= \frac{1}{9} + \frac{4^{k+1}}{9} [3(k+1) - 1]$	A 1	Either
	Hence formula is true for $n = k + 1$ (**) and since true for $n = 1$, formula is true for $n = 1, 2, 3$ (***) by induction	E1	Must have (*) and (**) present with 'true for $n=1$ ' stated at some stage. Previous 5 marks scored and concluding statement (***) must clearly indicate that it relates to positive integers eg 'formula true for all $n \ge 1$ ' is not a precise statement so scores E0
	Total	6	

Q	Answer	Marks	Comments
5(a)(i)	Direction vector (\mathbf{v} =) $\begin{bmatrix} 4 \\ -8 \\ 1 \end{bmatrix}$	B1	Correct direction vector identified
	(\mathbf{v} =) $\sqrt{4^2 + (-8)^2 + 1^2}$ (= 9) Direction cosines: $\frac{4}{9}$; $-\frac{8}{9}$; $\frac{1}{9}$	M1 A1	$\sqrt{4^2 + (-8)^2 + 1^2}$ or $\sqrt{3^2 + 1^2 + 2^2}$ oe Correct direction cosines
5(a)(ii)	$\alpha = \cos^{-1}\left(\frac{4}{9}\right) = 63.6^{\circ}$	B1ft	Ft on c's $\frac{4}{9}$; ft answer must be correctly rounded
5(b)	$ \begin{bmatrix} 3+4t \\ 1-8t \\ 2+t \end{bmatrix} $	B1	A correct position vector of general point on the line seen or used
	$12 = \begin{bmatrix} 3+4t \\ 1-8t \\ 2+t \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3+4t+1-8t+2+t$	M1	Substitution of c's general point on L into the equation of the plane and scalar product attempted
	t = -2	A 1	t = -2 oe
	(P.V. of pt of intersection=) $\begin{bmatrix} -5\\17\\0 \end{bmatrix}$	A 1	$\begin{bmatrix} -5\\17\\0 \end{bmatrix} $ oe
	Total	8	

Q	Answer	Marks	Comments
6	$\frac{d^2y}{dx^2} + 9y = 9x^2 + 6x + 2\cos 3x$		
	Aux. eqn. $m^2 + 9 = 0$	M1	PI by correct values of m seen/used
	$(y_{CF} =)A\cos 3x + B\sin 3x$	A 1	Correct CF in trig. form
	$(y_{PI} =) ax^2 + bx + c + dx \sin 3x$	M1 M1	For polynomial form For trig form (If other terms, not in CF or PI, are included in y_{PI} , look to see if their coefficients shown to be 0 later before awarding these M1 mark(s))
	$(y''_{PI} =)2a + 6d\cos 3x - 9dx\sin 3x$	A 1	Correct 2nd derivative
	9a=9; 9b=6; 2a+9c=0; 6d=2	m1	Dep on previous two M marks. Subst. into DE and equating coefficients to form four equations at least two correct. PI by correct values for the coefficients
	$(y_{PI} =) x^2 + \frac{2}{3}x - \frac{2}{9} + \frac{1}{3}x\sin 3x$	A 1	$x^2 + \frac{2}{3}x - \frac{2}{9}$ or correct values for a ,
		A 1	b and c ; dep on 2nd M1 mark only $+\frac{1}{3}x\sin 3x$; dep on 3rd M1 mark only
	$(y_{GS} =)$ $A\cos 3x + B\sin 3x + x^2 + \frac{2}{3}x - \frac{2}{9} + \frac{1}{3}x\sin 3x$	B1ft	c's CF + c's PI but must have exactly two arbitrary constants
	Total	9	

Q	Answer	Marks	Comments
7(a)	$x = \tanh y = \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}}$ $xe^{y} + xe^{-y} = e^{y} - e^{-y}$ $(x+1)e^{-y} = e^{y}(1-x)$ $\Rightarrow (x+1) = e^{2y}(1-x)$ $e^{2y} = \frac{1+x}{1-x} \Rightarrow y = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$	M1 A1	$xe^{y} + xe^{-y} = e^{y} - e^{-y}$ or $xe^{2y} + x = e^{2y} - 1$
	$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$	A1	A.G. Be convinced. Accept previous line if $y = \tanh^{-1}x$ stated previously Altn Reverse order to main scheme: $e^{2y} = \frac{1+x}{1-x}$ M1 ; $x = \frac{e^y - e^{-y}}{e^y + e^{-y}}$ A1 ; Completion A1
7(b)(i)	$\tanh^{-1} x = \frac{1}{2} \left[\ln(1+x) - \ln(1-x) \right]$ $= \frac{1}{2} \left[x - \frac{x^2}{2} + \dots - \left(-x - \frac{x^2}{2} \right) \right]$	М1	Relevant log law applied and series attempted for both $\ln(1+x)$ and $\ln(1-x)$. PI by correct coefficient of x^r
	$= \frac{1}{2} \left[\dots (-1)^{r+1} \frac{x^r}{r} \dots + \frac{x^r}{r} \right]$ Coeff. of x^r is $\frac{1}{2r} \left[1 + (-1)^{r+1} \right]$	A 1	oe Correct coefficient of x^r . Condone if a single x^r is also present with the coefficient.
7(b)(ii)	When $x = 0$, $\frac{dy}{dx} = 1; \frac{1}{3!} \frac{d^3 y}{dx^3} = \frac{1}{3}; \frac{1}{5!} \frac{d^5 y}{dx^5} = \frac{1}{5};$ $\frac{1}{7!} \frac{d^7 y}{dx^7} = \frac{1}{7}$	М1	Comparing coefficients of x , x^3 , x^5 and x^7 from (b)(i) with the general Maclaurin's series oe by direct differentiations
	When $x = 0$, $\left(\frac{dy}{dx} + \frac{d^3y}{dx^3} + \frac{d^5y}{dx^5} + \frac{d^7y}{dx^7}\right)$ $= 1 + 2 + 24 + 720 = 747$	A 1	747

	Total	7	
Q	Answer	Marks	Comments
8(a)	$\det \mathbf{A} = 1(k^2 - 12) - 2(k - 8) - 1(3 - 2k)$ $\det \mathbf{A} = k^2 + 1$ Since k is real, $k^2 \ge 0$ so $(\det \mathbf{A}) \ne 0$ so \mathbf{A} is non-singular	M1 A1 E1	Correct method to expand det $\bf A$ by row or column Ft only on det $\bf A=k^2+c$, where c is a positive integer. 'det $\bf A>0$ so $\bf A$ is non-singular' is $\bf E0$; we must see reference to non-zero with justification
8(b)	Cofactor matrix $ \begin{bmatrix} k^{2} - 12 & -k + 8 & -2k + 3 \\ -2k - 3 & k + 2 & 1 \\ k + 8 & -5 & k - 2 \end{bmatrix} $	M1 A2,1,0	One complete row or column correct A2 all 9 correct; else A1 at least 6 correct
	Inverse matrix $\mathbf{A}^{-1} = \begin{bmatrix} k^2 - 12 & -2k - 3 & k + 8 \end{bmatrix}$	M1	Transpose of their cofactors with no more than one further error $\underline{\bf and}$ division by their det ${\bf A} \neq 0$
	$\frac{1}{k^2 + 1} \begin{bmatrix} k^2 - 12 & -2k - 3 & k + 8 \\ -k + 8 & k + 2 & -5 \\ -2k + 3 & 1 & k - 2 \end{bmatrix}$	A1ft	Only ft on their det ${\bf A}$ from part (a) provided their det ${\bf A}$ is non-zero for all real values of k
8(c)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$		
	$= \frac{1}{k^2 + 1} \begin{bmatrix} k^2 - 12 - 6k - 9 + 6k + 48 \\ -k + 8 + 3k + 6 - 30 \\ -2k + 3 + 3 + 6k - 12 \end{bmatrix}$	М1	$\mathbf{A}^{-1} \ \mathbf{v}$ for c's \mathbf{A}^{-1} with at least one ft component correct
	$\begin{bmatrix} -\frac{k^2+1}{k^2+1} \\ -2k+3+3+6k-12 \end{bmatrix}$	A1ft	At least two ft components correct
	$x = \frac{k^2 + 27}{k^2 + 1} y = \frac{2k - 16}{k^2 + 1} z = \frac{4k - 6}{k^2 + 1}$	A 1	All correct
			NB $0/3$ scored if \mathbf{A}^{-1} not used.
	Total	11	

Q	Answer	Marks	Comments
	Given $\alpha + \beta = 0$		
9(a)(i)	$\alpha + \beta + \gamma + \delta = -\frac{1}{m} \qquad \Rightarrow \gamma + \delta = -\frac{1}{m}$	E1	
9(a)(ii)	$\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{m+n}{m} (**)$	M1	or $\sum \alpha \beta = \frac{m+n}{m}$
	From (**), $(\alpha + \beta)(\gamma + \delta) + \alpha\beta + \gamma\delta = \frac{m+n}{2}$		2 " m
	$(\alpha + \beta)(\gamma + \delta) + \alpha\beta + \gamma\delta = \frac{m+n}{m}$ so $\alpha\beta + \gamma\delta = \frac{m+n}{m}$	A1	
	$\alpha\beta\gamma + \alpha\beta\delta + \beta\gamma\delta + \alpha\gamma\delta = \frac{1}{m}(\#);$ $\alpha\beta\gamma\delta = \frac{n}{m}(\#\#)$	M1	Either (#) or (# #) or both $\sum \alpha \beta \gamma = \frac{1}{m}$ and $\sum \alpha \beta \gamma \delta = \frac{n}{m}$
	From (#) $\alpha\beta(\gamma+\delta) = \frac{1}{m}$	A1	
	so $\alpha\beta(-\frac{1}{m}) = \frac{1}{m} \Rightarrow \alpha\beta = -1$		
	Sub into (# #) gives $\gamma \delta = -\frac{n}{m}$	A 1	
	$\alpha\beta + \gamma\delta = \frac{m+n}{m} = 1 + \frac{n}{m}$ so $-1 - \frac{n}{m} = 1 + \frac{n}{m}$, $-2 = \frac{2n}{m}$ $\Rightarrow n = -m$		
	so $-1 - \frac{n}{m} = 1 + \frac{n}{m}$, $-2 = \frac{2n}{m}$ $\Rightarrow n = -m$	A1	AG be convinced
		Ai	Condone if left as $m = -n$

9(b)	$\alpha + \beta = 0$, and $\alpha\beta = -1$ so a quadratic factor is $x^2 - 1$ $mx^4 + x^3 - x - m = 0$	M1	Finding a quadratic factor PI
	$(x^2 - 1)(mx^2 + x + m) = 0$	M1	Finding other quadratic factor by division or by sum and product of roots method.
	Roots are 1, -1, $\frac{-1 \pm \sqrt{1 - 4m^2}}{2m}$ 4 distinct real roots $\Rightarrow 4m^2 < 1$, $m \neq 0$	A 1	Correct four roots or $1-4m^2>0$ oe
	ie $-\frac{1}{2} < m < 0$, $0 < m < \frac{1}{2}$	A 1	
	Total	11	

Q	Answer	Marks	Comments
10(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2}{x}y = \frac{\cos x}{x}$		
	I.F. is $\exp\left(\int \frac{2}{x} (dx)\right) = e^{2\ln x}$	М1	Identified and integration attempted PI
	$(I.F.) = x^2$	A 1	Seen or used
	$\frac{\mathrm{d}}{\mathrm{d}x} \left[x^2 \ y \right] = x \cos x \; ; \; x^2 y = \int x \cos x \; (\mathrm{d}x)$	М1	Either
	$x^2y = x\sin x - \int \sin x (\mathrm{d}x)$	A 1	PI by next line
	$x^{2}y = x\sin x + \cos x + p;$ $y = x^{-2}(x\sin x + \cos x + p)$	A 1	Either
10(b)(i)	As $x \to 0$, $y \to \frac{x(x - O(x^3)) + 1 - 0.5x^2 + + p}{2}$	М1	$\sin x = x$ () or $\cos x = 1-0.5x^2$ () substituted in c's GS
	$y \rightarrow \frac{1}{x^2}$	B1	Both $\sin x = x$ () and $\cos x = 1-0.5x^2$ () substituted in c's GS
	$y \rightarrow \frac{1+p}{x^2} + 0.5 + O(x^2) \Rightarrow p = -1$	A1ft	Ft on numerical and sign errors in c's GS
	$\Rightarrow y \rightarrow 0.5 \text{ as } x \rightarrow 0 \Rightarrow k = 0.5$	A 1	Correct value for k dep. on p found so that no term $\rightarrow \infty$ as $x\rightarrow 0$
10(b)(ii)	At st. pts. $\frac{dy}{dy} = 0$		
TO(D)(II)	$\frac{\mathrm{d}x}{\mathrm{subst into given DE}} \Rightarrow y = 0.5 \cos x$	М1	No more than one numerical/sign error in finding y as a multiple of
			$\cos x$ when $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	Since $k=0.5$, all stationary points of curve C lie on the curve $y=k\cos x$ so the student is correct	A1ft	Ft c's value for k but conclusion must be related to comparison of c's k with 0.5
	Total	11	

Q	Answer	Marks	Comments
11(a)	$128 e^{i\left(-\frac{\pi}{2}\right)}$	B1; B1	$r = 128 \; ; \theta = -\frac{\pi}{2}$
11(b)	$r = \sqrt[7]{128} = 2$	B1	r=2
	Use of de Moivre: c's $\left(-\frac{\pi}{2}\right) \div 7$	M1	If incorrect, ft on c's $-\frac{\pi}{2}$ in part (a)
	$\theta = -\frac{\pi}{14} + \frac{2k\pi}{7}$, $k=0,\pm 1,\pm 2,\pm 3$ (7 roots of $z^7+128i=0$ are)	A 1	7 correct values for θ ; mod 2π
	$2e^{i\left(-\frac{\pi}{14}\right)}; 2e^{i\left(\frac{3\pi}{14}\right)}; 2e^{i\left(\frac{\pi}{2}\right)} (=2i); 2e^{i\left(\frac{11\pi}{14}\right)}$	A 1	CAO
	$2e^{i\left(-\frac{5\pi}{14}\right)}; 2e^{i\left(-\frac{9\pi}{14}\right)}; 2e^{i\left(-\frac{13\pi}{14}\right)}$		
11(c)(i)	Im(z)	B1ft	Clear indication that the six roots lie on a circle of radius 2; ft c's r value in part (b)
		B1	Points shown on Argand diagram: Six points in the correct quadrants.
	$ \begin{array}{c} $	B1	Pairs of points having sym about the Im axis with no pair of points having sym about the Re axis.

11(c)(ii)	$2e^{i\left(-\frac{\pi}{14}\right)}\text{, }2e^{i\left(-\frac{13\pi}{14}\right)}\text{ and }2e^{i\left(\frac{3\pi}{14}\right)}\text{, }2e^{i\left(\frac{11\pi}{14}\right)}\text{ and }2e^{i\left(-\frac{9\pi}{14}\right)}\text{, }2e^{i\left(-\frac{5\pi}{14}\right)}$	M1	Choosing three pairs of c's roots whose products are real;
	Factors: $[z^{2}-2(e^{i\left(-\frac{\pi}{14}\right)}+e^{i\left(-\frac{13\pi}{14}\right)})z-4];$ $[z^{2}-2(e^{i\left(\frac{3\pi}{14}\right)}+e^{i\left(\frac{11\pi}{14}\right)})z-4];$ $[z^{2}-2(e^{i\left(-\frac{9\pi}{14}\right)}+e^{i\left(-\frac{5\pi}{14}\right)})z-4]$	A1ft	Two correct ft on c's r value in (b) in form shown or better eg $[z^2 + 2(e^{i\left(\frac{\pi}{14}\right)} - e^{-i\left(\frac{\pi}{14}\right)})z - 4];$ $[z^2 - 2(e^{i\left(\frac{3\pi}{14}\right)} - e^{-i\left(\frac{3\pi}{14}\right)})z - 4];$ $[z^2 + 2(e^{i\left(\frac{5\pi}{14}\right)} - e^{-i\left(\frac{5\pi}{14}\right)})z - 4]$
		M1	Correct attempt to find two correct values for q in factors $z^2 + i(p\sin(q\pi))z + t \text{ where } q < \frac{1}{2}$
	$Q(z) = \left[z^2 + i(4\sin\frac{\pi}{14})z - 4\right]$ $\left[z^2 - i(4\sin\frac{3\pi}{14})z - 4\right]\left[z^2 + i(4\sin\frac{5\pi}{14})z - 4\right]$	A 1	A correct product of three quadratic factors in the required form.
	Total	13	

Q	Answer	Marks	Comments
12(a)(i)	When $\theta = \frac{7\pi}{6}$, $r = \sin(\pi) = 0$		Use of either $\theta = \frac{7\pi}{6}$ or $\theta = \frac{\pi}{6}$ to give r
()(-)	\Rightarrow circle passes through the pole O	B1	= 0
12(a)(ii)	(Area of C_2) = $\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} \sin^2 \left(\theta - \frac{\pi}{6}\right) (d\theta)$	M1	A correct definite integral for the area of C_{2-} PI if limits missing but seen later
	$=\frac{1}{4}\int_{\frac{\pi}{6}}^{\frac{7\pi}{6}}\left[1-\cos 2\left(\theta-\frac{\pi}{6}\right)\right](\mathrm{d}\theta)$	M1	Expressing the integrand in terms of $\cos 2\left(\theta - \frac{\pi}{6}\right)$ oe
	$= \frac{1}{4} \left[\theta - \frac{1}{2} \sin \left(2\theta - \frac{\pi}{3} \right) \right]_{\frac{\pi}{6}}^{\frac{7\pi}{6}} = \frac{6\pi}{24} = \frac{\pi}{4}$	A 1	CSO

	_		
12(b)(i)	$L: \sqrt{3} \ y = 1 - x$		
	(Polar eqn of L) $\sqrt{3} r \sin \theta = 1 - r \cos \theta$	M1	Use of either $y = r \sin \theta$ or $x = r \cos \theta$
	$\frac{1}{\sqrt{3}\sin\theta + \cos\theta} = \frac{2}{3 + 2\cos\theta}$	M1	Equating r s for L and C_1 and attempt to find a value for a single trig term
	$\Rightarrow \sin \theta = \frac{\sqrt{3}}{2} \qquad \Rightarrow \theta = \frac{\pi}{3}, \ \frac{2\pi}{3}$		oe Forming a correct relevant quadratic equation and solving to find Cartesian coordinates
	When $\theta = \frac{\pi}{3}$, $r = \frac{1}{2}$; When $\theta = \frac{2\pi}{3}$, $r=1$	A1	At least 3 of the 4 polar values
	$\sin\left(\frac{2\pi}{3} - \frac{\pi}{6}\right) = \sin\frac{\pi}{2} = 1; \ \left(1, \frac{2\pi}{3}\right) \text{ on } C_2$ $\sin\left(\frac{\pi}{3} - \frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2}; \ \left(\frac{1}{2}, \frac{\pi}{3}\right) \text{ on } C_2$	A 1	Verifying that both $\left(1,\frac{2\pi}{3}\right)$ and $\left(\frac{1}{2},\frac{\pi}{3}\right)$ satisfy eqn of C_2
	Points $\left(1,\frac{2\pi}{3}\right)$ and $\left(\frac{1}{2},\frac{\pi}{3}\right)$ satisfy polar equations of L , C_1 and C_2 , and since		
	$OP > OQ$, $P\left(1, \frac{2\pi}{3}\right)$, $Q\left(\frac{1}{2}, \frac{\pi}{3}\right)$ are the required points of intersection.	A 1	Identifying correct P and Q plus a relevant concluding statement
	required points of intersection.		
12(b)(ii)	From (a)(ii) , radius of circle $C_2 = 0.5$ From (a)(i) and (b)(i) O and P are points on	E1	Accept any valid explanations but must include O and P being points on
	C_2 and length of OP =1=2×radius so OP is a diameter	E1	C_2 when referring to the length of OP
12(c)	$\tan[\pi/2 - (2\pi/3 - \pi/3)] = \tan(\pi/6)$	M1	Using relevant detail(s) from part(s) (b) in attempt to find the gradient of
	$y = x \tan\left(\frac{\pi}{6}\right) + c$	A 1	the tangent at <i>O</i> or <i>P</i> Equation of tangent at <i>P</i> with a correct gradient
	$y = x \tan\left(\frac{\pi}{6}\right) + c$ $P\left(1\cos\frac{2\pi}{3}, 1\sin\frac{2\pi}{3}\right)$ $y = \frac{x+2}{\sqrt{2}}$	B1ft	c's Polar coordinates of <i>P</i> correctly converted to Cartesian form
	$y = \frac{x+2}{\sqrt{3}}$	A 1	oe A correct Cartesian equation of tangent at <i>P</i> with all trig terms evaluated
	Total	15	

Q	Answer	Marks	Comments
13(a)	$\frac{dy}{dx} = \sinh\left(\frac{x}{a}\right)$ $(s=) \int_{-d}^{d} \sqrt{1 + \sinh^{2}\left(\frac{x}{a}\right)} dx$ $\int_{-d}^{(d)} \sqrt{1 + \sinh^{2}\left(\frac{x}{a}\right)} dx$	B1 M1	Correct differentiation Correct ft integral
	$(s=) \int_{(-d)}^{(d)} \cosh\left(\frac{x}{a}\right) dx$ $= \left[a \sinh\left(\frac{x}{a}\right)\right] \frac{d}{-d}$ $= a \sinh\left(\frac{d}{a}\right) - a \sinh\left(-\frac{d}{a}\right) = 2a \sinh\left(\frac{d}{a}\right)$	A1 A1	A.G. be convinced
13(b)(i)	$P \qquad Q \\ \downarrow \qquad \downarrow$	E1	Sketch of the chain as a cosh curve with sufficient detail eg lowest pt $(0, a)$ of cosh curve being a distance $\frac{s}{2n}$ below PQ and height of PQ above x -axis oe being $a \cosh\left(\frac{d}{a}\right)$, used to justify $a + \frac{s}{2n} = a \cosh\left(\frac{d}{a}\right)$
13(b)(ii)	$a + \frac{s}{2n} = a \cosh\left(\frac{d}{a}\right) = a\sqrt{1 + \sinh^2\left(\frac{d}{a}\right)}$	M1	$ \cosh\left(\frac{d}{a}\right) = \sqrt{1 + \sinh^2\left(\frac{d}{a}\right)} \text{used} $
	$=a\sqrt{1+\left(\frac{s}{2a}\right)^2}=\sqrt{a^2+\frac{s^2}{4}}$	A 1	A.G. be convinced

13(b)(iii)	$a^2 + \frac{as}{n} + \frac{s^2}{4n^2} = a^2 + \frac{s^2}{4}$	M1	Squaring both sides
	$a^{2} + \frac{as}{n} + \frac{s^{2}}{4n^{2}} = a^{2} + \frac{s^{2}}{4}$ $\frac{as}{n} = \frac{s^{2}}{4n^{2}}(n^{2} - 1) \Rightarrow a = \frac{s}{4n}(n^{2} - 1)$	A 1	$a = \frac{s}{4n}(n^2 - 1)$
	$\frac{2a\sinh(\frac{d}{a})}{a\cosh(\frac{d}{a})} = \frac{s}{a + \frac{s}{2n}} \Rightarrow 2\tanh(\frac{d}{a}) = \frac{s}{a + \frac{s}{2n}}$	M1	Identity $\frac{\sinh x}{\cosh x} = \tanh x$ used
	$\tanh\left(\frac{d}{a}\right) = \frac{2n}{n^2 + 1}$	A 1	
	$\tanh\left(\frac{d}{a}\right) = \frac{2n}{n^2 + 1}$ $\frac{d}{a} = \tanh^{-1}\left(\frac{2n}{n^2 + 1}\right) = \frac{1}{2}\ln\left[\frac{1 + \frac{2n}{n^2 + 1}}{1 - \frac{2n}{n^2 + 1}}\right]$	M1	$\tanh^{-1}\left(\frac{2n}{n^2+1}\right) = \frac{1}{2}\ln\left[\frac{1+f(n)}{1-f(n)}\right]$
	$\frac{d}{a} = \frac{1}{2} \ln \left[\frac{(n+1)^2}{(n-1)^2} \right] = \ln \left(\frac{n+1}{n-1} \right)$	A 1	
	$PQ = \frac{s}{2n}(n^2 - 1)\ln\left(\frac{n+1}{n-1}\right)$	A 1	A.G. Be convinced
	Total	14	

13(b)(iii) ALT			
	$a^2 + \frac{as}{n} + \frac{s^2}{4n^2} = a^2 + \frac{s^2}{4}$	M 1	Squaring both sides
	$\frac{as}{n} = \frac{s^2}{4n^2}(n^2 - 1) \Rightarrow a = \frac{s}{4n}(n^2 - 1)$	A 1	$a = \frac{s}{4n}(n^2 - 1)$
	$PQ = 2d = 2a \sinh^{-1}\left(\frac{s}{2a}\right)$	(M1)	$PQ=2a \sinh^{-1}\left(\frac{s}{2a}\right)$ oe or $PQ=2a \cosh^{-1}\left(1+\frac{s}{2na}\right)$ oe
	$= \frac{s}{2n} (n^2 - 1) \sinh^{-1} \left(\frac{2n}{n^2 - 1} \right)$	(A1)	oe (1 + 2na)
	$= \frac{s}{2n}(n^2 - 1) \ln \left[\frac{2n}{n^2 - 1} + \sqrt{1 + \frac{4n^2}{(n^2 - 1)^2}} \right]$	(M1)	
	[2 (2 4)2]		$\cosh^{-1}[f(n)] = \ln[f(n) + \sqrt{\{f(n)\}^2 - 1}]$
	$= \frac{s}{2n}(n^2 - 1) \ln \left[\frac{2n + \sqrt{(n^2 + 1)^2}}{n^2 - 1} \right]$	(A1)	oe
	$= \frac{s}{2n}(n^2 - 1) \ln \left[\frac{(n+1)^2}{(n+1)(n-1)} \right]$		
	$PQ = \frac{s}{2n}(n^2 - 1)\ln\left(\frac{n+1}{n-1}\right)$	(A1)	A.G. Be convinced
	Total	14	