

International A-level FURTHER MATHEMATICS FM05

(9665/FM05) – Further Mechanics Unit 2

Mark scheme

June 2019

Version: 1.0 Final

*JUNE19FM05/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

	Μ	Mark is for method
	m	Mark is dependent on one or more M marks and is for method
	Α	Mark is dependent on M or m marks and is for accuracy
	В	Mark is independent of M or m marks and is for method and accuracy
	E	Mark is for explanation
V	`or ft	Follow through from previous incorrect result
	CAO	Correct answer only
	CSO	Correct solution only
	AWFW	Anything which falls within
	AWRT	Anything which rounds to
	ACF	Any correct form
	AG	Answer given
	SC	Special case
	oe	Or equivalent
	A2, 1	2 or 1 (or 0) accuracy marks
	– <i>x</i> EE	Deduct <i>x</i> marks for each error
	NMS	No method shown
	Ы	Possibly implied
	SCA	Substantially correct approach
	sf	Significant figure(s)
	dp	Decimal place(s)

Q	Answer	Mark	Comments
1 (a)	$0.1 \times 9.8 \times 0.8(1 - \cos 40^\circ) = \frac{1}{2} \times 0.1v^2$ $v = \sqrt{15.68(1 - \cos 40^\circ)} = 1.9 \text{ m s}^{-1}$	M1 A1 A1 3	M1: GPE found using either cos40° or sin 40° A1:Correct energy equation A1: Correct speed. AWRT 1.9
1 (b)	$T - 0.1 \times 9.8 = 0.1 \times \frac{15.68(1 - \cos 40^\circ)}{0.8}$ $T = 1.4 \text{ N}$	M1 A1 A1 3	M1: Equation of motion using radial acceleration formula. Allow their speed from part (a). A1: Correct three term equation of motion. A1: Correct tension. AWRT 1.4
	Total	6	

Q	Answer	Mark	Comments
	$\frac{\lambda \times 30^2}{2 \times 20} = 75 \times 9.8 \times 50$	M1	M1: Correct GPE used in two term energy
	$\frac{1}{2 \times 20} = 75 \times 9.8 \times 50$	B1	equation.
2 (a)		• •	B1: Correct initial EPE.
- ()	$\lambda = \frac{1470000}{900} = \frac{4900}{3} = 1600 \text{ N}$	A1	A1: Correct modulus.
	900 3	•	AWRT 1600
	Max appad when	3	M1. Tanaian and waight aquated
	Max speed when:	M1	M1: Tension and weight equated. B1: Correct tension
	$\frac{4900 \times e}{3 \times 20} = 75 \times 9.8$	B1	
	3 × 20	DI	A1: Correct extension for equilibrium. M1: Energy equation with at least two
	e = 9 m	A1	terms correct with any signs
	$e = 7 \mathrm{m}$		A1: Correct equation.
2 (b)	Speed given by:	M1A1	A1: Correct speed.
	$1 4900 \times 9^2$	A1	AWRT 22
	$29 \times 75 \times 9.8 = \frac{1}{2} \times 75\nu^2 + \frac{4900 \times 9^2}{2 \times 3 \times 20}$	A1	
	$v = \sqrt{480.2} = 22 \text{ m s}^{-1}$		
		7	
	No air resistance.	B1	
2 (c)	Bungee Jumper is a particle		B1: Two appropriate assumptions.
		1	
	Total	11	

Q	Answer	Mark	Comments
	$5\cos 30^\circ = v\cos \alpha$	M1A1	M1: Equation for motion parallel to wall.
		M1A1	A1: Correct equation.
	$0.4 \times 5\sin 30^\circ = \nu \sin \alpha$		M1: Equation for motion perpendicular to
			wall. Must include 0.4
	$\sin \alpha = 2\sin 30^{\circ}$	M1A1	A1: Correct equation.
3 (a)	$\frac{1}{\cos \alpha} = \frac{1}{5\cos 30^{\circ}}$		M1: Expression for tan α
	$2\sqrt{3}$		A1: Correct expression.
	$\tan \alpha = \frac{1}{15}$	A1	A1: Correct angle. AWRT 13°
	$\alpha = 13.0039^{\circ}$		
	$\alpha = 13^{\circ}$	_	
	5 200	7	
	$v = \frac{5\cos 30^\circ}{\cos 30^\circ}$	M1A1	M1: Equation with v as the only unknown.
	ςosα	A 4	A1: Correct equation.
	v = 4.4 Or	A1	A1: Correct value for v. AWRT 4.4
3 (b)	2sin30°	(M1A1)	
	<i>v</i> =		
	$\sin \alpha$ $\nu = 4.4$	(A1)	
	v = 1.1	3	
	$I = 0.5 \times 4.44 \sin 13^\circ - 0.5(-5 \sin 30^\circ)$	M1A1	M1: Impulse equation with correct values
			and any signs.
3 (c)	I = 1.7 N s	A1	A1: Correct equation.
			A1: Correct impulse AWFW [1.7, 1.8]
		3	
	Total	13	

Q	Answer	Mark	Comments
4 (a)	$mv\frac{\mathrm{d}v}{\mathrm{d}x} = -kv$ $m\frac{\mathrm{d}v}{\mathrm{d}x} = -k$	M1 A1 2	M1: Differential equation with correct terms and any signs. A1: Simplified correct differential equation.
4 (b)	$mv = -kx + c$ Using $x = 0, v = U$ $mU = c$ Using $v = 0$ $0 = -kx + mU$ $x = \frac{mU}{k}$	M1 A1 M1 A1 A1 4	 M1: Integrating their equation. Condone omission of <i>c</i>. A1: Correct integration. M1: Initial values used to find <i>c</i>. A1: Correct value of <i>c</i> and correct final answer from correct working.
4 (c)	$m\frac{dv}{dt} = -kv$ $\frac{m}{v}\frac{dv}{dt} = -k$ $m\ln(v) = -kt + c$ Using t= 0, v = U $m\ln(U) = c$ Using v = $\frac{U}{2}$ $m\ln\left(\frac{U}{2}\right) = -kt + m\ln(U)$ $t = \frac{m}{k}\ln(2)$	M1 A1 M1 A1 M1 A1 7	M1: Differential equation with correct terms and any signs. M1: Integrating their equation. Condone omission of <i>c</i> . A1: Correct integrals. M1: Initial values used to find <i>c</i> . A1: Correct value of <i>c</i> . M1: Substitutes $\frac{U}{2}$. A1: Correct time.
	Total	13	

Q	Answer	Mark	Comments
	$1.5 = 0.05\omega$	M1	M1: Max speed used to form an equation
	$\omega = 30$	A1	to find ω .
5 (a)	Period $=\frac{2\pi}{30} = 0.209 \text{s}$		A1: Correct ω .
0 (4)	$renou = \frac{1}{30} = 0.2093$	A1	A1: Correct period. AWRT 0.21
		3	
	As SHM		M1: Differential equation in terms of k .
	$0.5\ddot{x} = -kx$	M1	A1: Correct equation for k.
5 (b)	$2k = 30^2$	A1	A1: Correct k.
• ()	$k = \frac{900}{2} = 450 \text{ N m}^{-1}$	A1	
	2 2	3	
	In equilibrium	 M1	M1: Equation to find extension in
	$0.5 \times 9.8 = 450e$		equilibrium.
		A1	A1: Correct extension.
	$e = \frac{4.9}{450} = 0.0109 \text{ m}$	A1	A1: Correct maximum extension.
5 (c)	Max extension $= 0.0109 + 0.05$		A1: Correct maximum length. AWRT 0.56
	= 0.0609 m	A1	
	Max length = 0.0609 + 0.5 = 0.561 m	4	
	$v^2 = 30^2 (0.05^2 - 0.0109^2)$	4 M1A1	M1: Use of SHM equation with correct
	v = 30 (0.03 - 0.0109) $v = 1.46 \text{ m s}^{-1}$	A1	values. The terms x and a may be
5 (d)	v = 1.10 m 5	,,,	interchanged.
- ()			A1: Correct equation.
		3	A1: Correct speed. AWRT 1.5
	Total	13	

Q	Answer	Mark	Comments
	$y = U\sin\theta t - \frac{1}{2}g\cos 30^{\circ}t^2$	M1A1	M1: Equation for distance from the plane. Allow sign / angle errors.
	$0 = U\sin\theta t - \frac{\sqrt{3}}{4}gt^2$ $4U\sin\theta$	M1	A1: Correct equation. M1: Solving <i>their</i> quadratic for <i>t</i>
	$t = \frac{4U \sin\theta}{g\sqrt{3}}$	A1	A1: Correct time.
6 (a)	$\dot{x} = Ucos\theta - gsin30^{\circ}t$	M1	M1: Equation for velocity parallel to the
	$0 = U\cos\theta - \frac{g}{2} \times \frac{4U\sin\theta}{g\sqrt{3}}$	A1	plane. Allow sign / angle errors. A1: Correct equation.
	$\sqrt{3}\cos\theta = 2\sin\theta$ $\tan\theta = \frac{\sqrt{3}}{2}$	A1	A1: AG, CSO.
	2	7	
	$\dot{y} = U\sin\theta - g\cos 30^{\circ}t$ $\dot{y} = U\sqrt{\frac{3}{7} - \frac{\sqrt{3}}{2}g} \times \frac{4U}{g\sqrt{3}} \times \sqrt{\frac{3}{7}}$	M1 A1	M1: Equation for velocity perpendicular to the plane. Allow sign / angle errors. A1: Correct equation. A1: Correct velocity
6 (b)	$\dot{y} = -U \sqrt{\frac{3}{7}}$		A1: Correct speed.
0 (5)		A1	
	Speed = $U\sqrt{\frac{3}{7}} = \frac{U\sqrt{21}}{7} = 0.65U$	A1	
		4	
	Total	11	

Q	Answer	Mark	Comments
7 (a)	<i>B</i> will move along the line of centres.	B1 1	B1: Correct statement about the line of centres.
7 (b)	Conservation of momentum along line of centres: $3 \times 4\cos 60^\circ = 2v_B + 3v_A$ $6 = 2v_B + 3v_A$ Use of law of restitution: $v_A - v_B = -0.6(4\cos 60^\circ - 0)$ $v_A - v_B = -1.2$ $v_A = v_B - 1.2$ $b = 2v_B + 3(v_B - 1.2)$ $v_B = \frac{9.6}{5} = 1.9 \text{ m s}^{-1}$	M1 A1 M1 A1 M1 A1 A1	 M1: Three term equation for conservation of momentum. Allow trig errors. A1: Correct equation. M1: Restitution equation. Allow sign / trig errors. A1: Correct equation. M1: Solving their equations. A1: Correct speed to 2 sf. Accept 1.92
7 (c)	Velocity along line of centres: = 1.92 - 1.2 = 0.72 Velocity perpendicular to line of centres: = 4sin60 = $2\sqrt{3}$ Magnitude of velocity: $\sqrt{0.72^2 + (2\sqrt{3})^2} = 3.5 \text{ m s}^{-1}$ Direction θ to line of centres: $\theta = \tan^{-1}\left(\frac{2\sqrt{3}}{0.72}\right) = 78^\circ$	M1 M1 A1 A1 4	 M1: Finding velocity along line of centres. M1: Finding velocity perpendicular to the line of centres. A1: Correct magnitude of velocity. AWRT 3.5 A1: Correct direction. AWRT 78
7 (d)	$I = 2 \times 1.92 = 3.8 \text{ N s}$	M1A1F 2	M1: Impulse equation with correct values and any signs. A1F: Correct impulse. AWRT 3.8 FT their velocity.
	Total	13	