

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

INTERNATIONAL AS MATHEMATICS

(9660/MA01) Pure Mathematics Unit P1

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
TOTAL		

	Answe	er all questions	in the spaces provid	ed.	Do r outs
1	The line <i>L</i> ₁ has equation	on $3x - 2y + 5 =$	= 0		
1 (a) (i)	Find the <i>x</i> -coordinate o	f the point wher	The L_1 crosses the <i>x</i> -a	ixis.	
	Circle your answer.				[1 mark]
	$-\frac{5}{3}$	$-\frac{3}{5}$	$\frac{3}{5}$	<u>5</u> 3	
1 (a) (ii	Find the gradient of L_1				
	Circle your answer.				[1 mark]
	-3	$-\frac{3}{2}$	$\frac{3}{2}$	3	
1 (b)	The line L_2 is perpendic	cular to <i>L</i> ₁ . Botl	n lines cross the <i>y</i> -a	xis at the same p	oint.
	Find the equation of L_2	, giving your an	swer in the form $y =$	mx + c	[2 marks]
		-	<i>y</i> =		

outside the Given that $p^4 = 16a^{20}b^8$, where p > 0, find p in terms of a and b, giving your answer in 2 (a) its simplest form. [2 marks] *p* = _____ Let $y = \sqrt[3]{x}$ and $z = \left(\frac{x}{y}\right)^2$ 2 (b) Express z in the form x^k , where k is rational. [3 marks] *z* = _____

5

Do not write

box

3	It is given that $f(x) = 2x^2 - 16x + 38$	Do not w outside t box
3 (a)	Express $f(x)$ in the form $a(x-b)^2 + c$, where a, b and c are positive integers.	s marks]
	f(x) =	
3 (b)	The curve <i>C</i> with equation $y = f(x)$ crosses the <i>y</i> -axis at the point <i>A</i> and has a verate <i>B</i> .	rtex
	Sketch the graph of <i>C</i> , showing the coordinates of <i>A</i> and <i>B</i> .	s marks]
	<i>У</i> ↑	
	\overline{O}	

		Do
3 (c)	The line with equation $y = 4x + 20$ intersects <i>C</i> at the points <i>P</i> and <i>Q</i> .	01
3 (c) (i) S	Show that the <i>x</i> -coordinates of <i>P</i> and <i>Q</i> satisfy the equation	
	$x^2 - 10x + 9 = 0$	
	[1 mar	' k]
-		
-		
-		
-		
-		
3 (c) (ii) l	Find the length of the line segment PQ.	
(Give your answer in the form $m\sqrt{n}$ where <i>m</i> is an integer and <i>n</i> is prime.	
	[4 mark	s]
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
	Answer	_ -

(a)	The first four terms of the binomial expansion of $(1 - 3x)^6$ are	
	$1 - 18x + px^2 + qx^3$	
	where p and q are constants.	
	Show that $p = 135$ and find the value of q .	
		[3 marks]
	$q = _$	

4 (b)	Find the coefficient of x^3 in the expansion of	Do not write outside the box
	$\left(1+\frac{x}{5}\right)\left(1-3x\right)^{6}$	
	[3 marks]	
	Answer	
		6
	Turn over for the next question	
	Turn over ►	

		Do not write
5	The curve C has equation $y = x^3 + 2x^2 - 15x + 20$	outside the box
	The point $P(2, 6)$ lies on C .	
5 (a)	Find an equation for the normal to <i>C</i> at the point <i>P</i> . [5 marks]	
	Answer	

5	(b)	The point $A(-3, 56)$ lies on the curve C.	Do not write outside the box
5	(b) (i)	Verify that <i>A</i> is a stationary point.	
		[1 mark]	
		$d^2 v$	
5	(b) (ii)	Find the value of $\frac{dx^2}{dx^2}$ at <i>A</i> . [2 marks]	
		Answer	
_			
5	(b) (iii)	Using your answer to part (b)(ii), explain whether A is a maximum or a minimum. [1 mark]	
5	(c)	The point $B\left(1\frac{2}{3}, 5\frac{5}{27}\right)$ is the only other stationary point of <i>C</i> .	
		State the possible values of x for which $f(x) = x^3 + 2x^2 - 15x + 20$ is a decreasing function.	
		[1 mark]	
		Answer	
			10

6 (b) (i)	State, with a reason, whether your approximation in part (a) is an over-estimate or an under-estimate of the value of the integral. [2 marks]
6 (b) (ii)	Explain how you could obtain a better approximation to the value of the integral using the trapezium rule. [1 mark]
	Turn over for the next question

Do not write outside the box

7

		Do not v
7	The curve with equation	outside box
	$v = 2ax^3 - 7bx$	
	$\begin{bmatrix} 1 \end{bmatrix}$	
	where a and b are constants, is translated by the vector $\begin{bmatrix} 1\\ 4 \end{bmatrix}$ to give the curve C.	
7 (2)	Show that the equation of C can be written as	
1 (a)	Show that the equation of C can be written as	
	$y = 2ax^3 - 6ax^2 + (6a - 7b)x - 2a + 7b + 4$	

			Do not write
7 (b)	The point <i>P</i> (2, 8) lies on <i>C</i> and the tangent to <i>C</i> at <i>P</i> has gradient 20		outside the box
	Find the value of a and the value of b .		
		[7 marks]	
	a — h —		
	<i>u</i> – <i>v</i> –		
			10

			Do not writ
8	An arithmetic series has first term 3, common difference d and n th term u_n		outside the box
	It is given that $u_5 = p + 4$ and $u_9 = (2p - 1)^2$, where p is a constant.		
8 (a)	Show that p satisfies		
	$2p^2 - 3p - 2 = 0$	[4 marke]	
8 (b)	Given that $p > 0$:		
8 (b) (i)	find the value of <i>d</i> ;		
		[3 marks]	
	<i></i>		
	<i>a</i> =		

The polynomial $p(x)$ is given by $p(x) = x^{3} + ax^{2} - x - 21$ where <i>a</i> is a constant. The remainder when $p(x)$ is divided by $(x + 2)$ is -7 Use the Remainder Theorem to show that $a = 5$	
$p(x) = x^{2} + ax^{2} - x - 21$ where <i>a</i> is a constant. The remainder when $p(x)$ is divided by $(x + 2)$ is -7 Use the Remainder Theorem to show that $a = 5$	
where <i>a</i> is a constant. The remainder when $p(x)$ is divided by $(x + 2)$ is -7 Use the Remainder Theorem to show that $a = 5$	
The remainder when $p(x)$ is divided by $(x + 2)$ is -7 Use the Remainder Theorem to show that $a = 5$	
Use the Remainder Theorem to show that $a = 5$	
[2	marks]
•	
Use the Factor Theorem to show that $(x + 3)$ is a factor of $p(x)$.	
[2	marks]

		Do not write
9 (c)	Given that $x > 0$, use your answer to part (b) to find	outside the box
	$\int \frac{x^3 + 5x^2 - x - 21}{\sqrt{x}(x+3)} dx$	
	$\int \sqrt{x} \left(x + 0 \right)$ [6 marks]	
	Answer	
		10

0	A geometric series has positive common ratio $(k^4 - 4k^2 - 11)$, where the constant k is real.
	The sum to infinity of this series does not exist.
0 (a)	By substituting $y = k^2$, show that
	$y^2 - 4y - 12 \ge 0$ [2 marks]

10 (b)	Hence find the possible values of k .	Do not write outside the box
	Fully justify your answer. [4 marks]	
	Answor	
	END OF QUESTIONS	6

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

