

Please write clearly in b	block capitals.		
Centre number		Candidate number	
Surname _			
Forename(s)			
Candidate signature _			

INTERNATIONAL AS FURTHER MATHEMATICS

Further Pure Mathematics Unit 1

Thursday 31 May 2018 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the booklet of formulae and statistical tables, which is included as an insert.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the box at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside
 the box on each page or on blank pages. If you require extra space, use a
 supplementary answer book.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

FM01

Answer all questions in the spaces provided.	
A curve has the equation $y = 2x^2 - 4x$	
A line passes through two points on the curve, one where $x = 3$ and the other where $x = 3 + h$	
Find the gradient of this line in the form $p+qh,$ where p and q are integers. [3 mar	·ks]
Answer	
Show how the answer to part (a) can be used to find the gradient of the curve at the period where $x = 3$	OIIIL
Show how the answer to part (a) can be used to find the gradient of the curve at the period where $x=3$ State the value of this gradient.	
where $x = 3$ State the value of this gradient.	
where $x = 3$ State the value of this gradient.	

2	It is given that $z = x + iy$, where x and y are real. Also, $\frac{3-2i}{z} = a + ib$, where a and b are real.	
	Find a and b in terms of x and y . [3 marks]	
	Δηςωργ	

Turn over for the next question

3 (a)	Given that 1	f(<i>r</i>) =	$\frac{1}{r+2}$,	show that
-------	--------------	-----------------	-------------------	-----------

$$f(r) - f(r+1) = \frac{1}{(r+2)(r+3)}$$

[1 mark]

3	(h)	Use the method of differences t	٥.

3 (b) (i) find the exact value of

$$\sum_{r=11}^{30} \frac{1}{(r+2)(r+3)}$$

[4 marks]

Answer

9

3 (b) (ii) show that

$$\sum_{r=18}^{\infty} \frac{1}{(r+2)(r+3)} = \frac{1}{m}$$

where m is an integer.

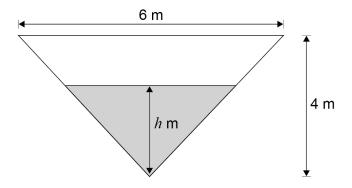
[4 marks]

Turn over for the next question

4 Find the general solution of the equation	4	Find the general	solution of the	equation
--	---	------------------	-----------------	----------

$$\cos\left(3x+\frac{\pi}{6}\right)=\frac{1}{\sqrt{2}}$$

	[5


Answer			

_

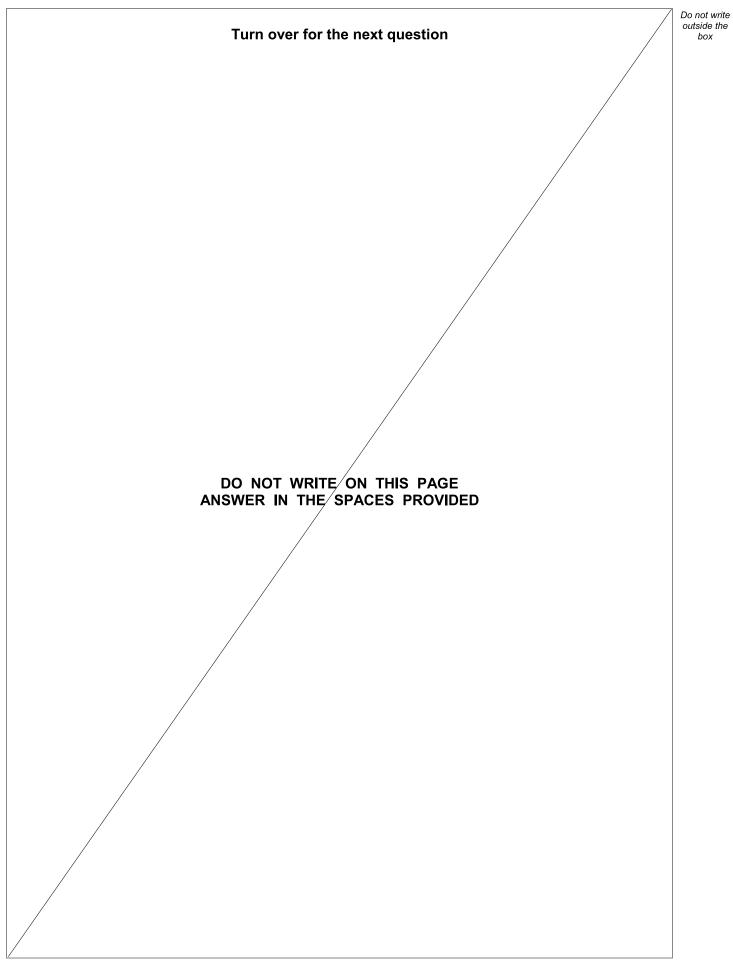
5 [The volume V of a cone is given by the formula $V = \frac{1}{3}\pi r^2 h$, where r is the radius of the circular base of the cone and h is the height of the cone.]

A water tank in the shape of an inverted cone has height 4 metres and maximum diameter 6 metres. The cross-section of the tank is shown in the diagram.

The tank fills with water at a rate of 0.06 m³ per minute.

At time t minutes after the tank starts to fill, the depth of water in the tank is h metres.

Find the rate at which h is increasing when h = 2.5


Give your answer in terms of π .

[8 marks]

Do not write outside the

6 (a)	Find the value of	box
	$\sum^{45} (2r)^2$	
	r = 1	
	[2 marks]	
	A	
	Answer	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	
6 (b)	Hence find the sum of the squares of all the odd numbers from 1 to 89 [3 marks]	5
6 (b)	[3 marks]	

7	The quadratic equation	
	$x^2 - 4x + 7 = 0$	
	has roots $lpha$ and eta .	
7 (a)	Write down the values of $\alpha+\beta$ and $\alpha\beta$.	[2 marks]
	lpha+eta=	

/ (b)	Find the value of $\alpha^2 + \beta^2$	[2 marks]

Answer

 $\alpha\beta =$ _____

7 (c)	Show that	
	$\alpha^4 + \beta^4 = -94$	
		[2 marks]
7 (d)	Find a quadratic equation, with integer coefficients, which has roots	
	$lpha^2 + rac{eta}{lpha}$ and $eta^2 + rac{lpha}{eta}$	
	$\alpha^{-} + \frac{1}{\alpha}$ and $\beta^{-} + \frac{1}{\beta}$	
		[6 marks]
	Answer	

8 A hyperbola H_1 has equation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

where a and b are positive constants.

 $H_{\rm 1}$ intersects the $x{\rm -}{\rm axis}$ at the points (6, 0) and (–6, 0)

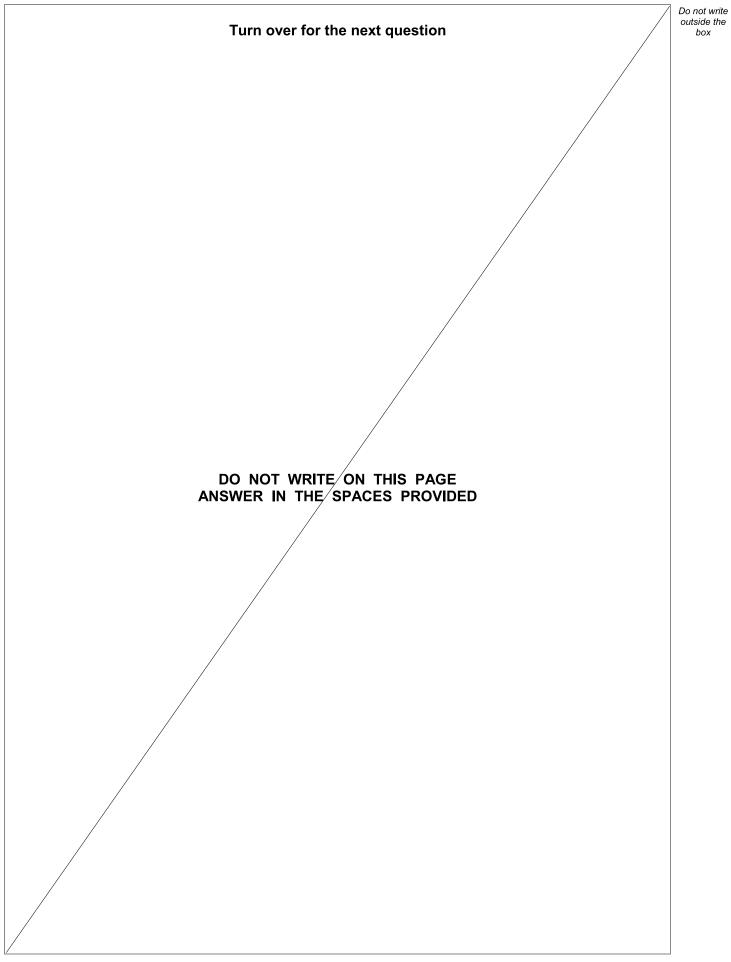
The asymptotes of ${\cal H}_{\rm 1}$ have equations

$$y = \frac{2}{3} x \quad \text{and} \quad y = -\frac{2}{3} x$$

8 (a) Find the values of a and b.

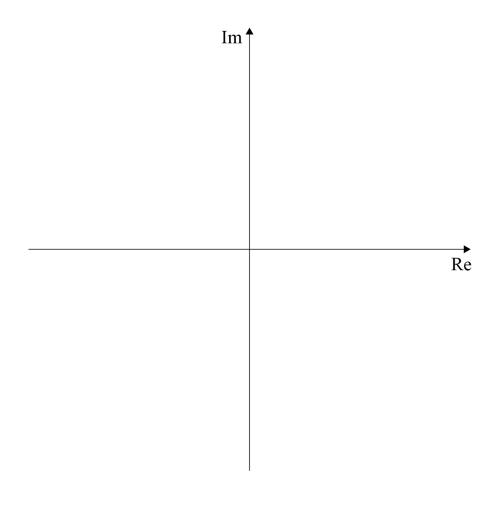
[2 marks]

$$a =$$


8 (b)	The hyperbola H_1 is translated by the vector $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$ to give the hyperbola H_2			
8 (b) (i)	Write down the equation of ${\cal H}_2$ [1 mark]			
	Answer			
8 (b) (ii)	Show that, if the line $y = mx$ intersects H_2 , then the x -coordinates of the points of intersection must satisfy the equation			
	$(4 - 9m^2) x^2 - 32x - 80 = 0$ [3 marks]			
	Question 8 continues on the next page			

Do not write outside the

Find the equations of the tangents to H_{2} which pass through the origin.	[5 mark
Answer	


9 The locus L of points satisfies the equation |z| = |z - 4 - 4i|

The point P represents the complex number $\mathbf{4} + \mathbf{4}\mathbf{i}$

The circle C has centre P and touches L.

9 (a) Sketch L and C on the same Argand diagram in the space below.

[4 marks]

Do not write outside the

Δ /L\	Civan that - lies on C find the maximum needble value of 17.1	I
9 (b)	Given that z_1 lies on C , find the maximum possible value of $ z_1 $	[3 marks]
		[5 marks]
	Answer	
9 (c)	Observation to the state of the	
J (J)	Given that z_2 lies on C , find the minimum possible value of $\arg(z_2)$	
<i>o</i> (<i>o</i>)	Given that z_2 lies on $\mathbb C$, find the minimum possible value of $\arg(z_2)$	[3 marks]
0 (0)	Given that z_2 lies on $\mathbb C$, find the minimum possible value of $\arg(z_2)$	[3 marks]
<i>o</i> (<i>o</i>)	Given that z_2 lies on $\mathbb C$, find the minimum possible value of $\arg(z_2)$	[3 marks]
o (o)	Given that z_2 lies on $\mathbb C$, find the minimum possible value of $\arg(z_2)$	[3 marks]
3 (3)	Given that z_2 lies on C , find the minimum possible value of $\arg(z_2)$	[3 marks]
3 (3)	Given that z_2 lies on C , find the minimum possible value of $\arg(z_2)$	[3 marks]
3 (3)	Given that z_2 lies on C , find the minimum possible value of $\arg(z_2)$	[3 marks]
3 (3)	Given that z_2 lies on C , find the minimum possible value of $\arg(z_2)$	[3 marks]
	Given that z_2 lies on C, find the minimum possible value of $\arg(z_2)$	[3 marks]
	Given that z_2 lies on C, find the minimum possible value of $\arg(z_2)$	[3 marks]
	Given that z_2 lies on C , find the minimum possible value of $\arg(z_2)$	[3 marks]
	Given that z_2 lies on C , find the minimum possible value of $\arg(z_2)$	[3 marks]
	Given that z_2 lies on C , find the minimum possible value of $\arg(z_2)$	[3 marks]
		[3 marks]
	Given that z_2 lies on C, find the minimum possible value of $\arg(z_2)$	[3 marks]
		[3 marks]



Do not write outside the box

ion

$$y = \frac{(x+5)(x+1)}{x(x-4)}$$

10 (a)	State the equations of the asymptotes of \mathcal{C} .	[3 marks]

Do not write outside the box

10	(b)	The line $y = k$ intersects the curve C .	
10	(b) (i)	Show that	471 - 42 0
		$4k^2 +$	$17k+4\geq 0$
			[4 marks]
		Overtion 10 continues	an the most man

Question 10 continues on the next page

Do not write outside the box

			oui
10	(b) (ii)	Hence find the coordinates of the stationary points of the curve C .	
		No gradit will be given for solutions using differentiation	
		No credit will be given for solutions using differentiation. [5 marks]	
		[eae]	
			_
			_
		Answer	
		END OF QUESTIONS	
Col	pyright info	rmation	
exa	mination pa	lity purposes, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the per or support materials. This booklet is published after each examination series and is available for free download from lexams.org.uk after the live examination series.	
Oxf	ord Internat	eproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and ional AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright ag Hill House, Guildford, GU2 7XJ.	
Cor	oyright © 20	18 Oxford International AQA Examinations and its licensors. All rights reserved.	

